
5.1 Mathematical induction

• Want to know whether we can 
reach every step of this ladder

– We can reach first rung of the 
ladder

– If we can reach a particular run of 
the ladder, then we can reach the 
next run

• Mathematical induction: show 
that p(n) is true for every
positive integer n
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Mathematical induction

• Two steps

– Basis step: show that p(1) is true

– Inductive step: show that for all positive integers 
k, if p(k) is true, then p(k+1) is true. That is, we 
show p(k)p(k+1) for all positive integers k

• The assumption p(k) is true is called the 
inductive hypothesis

• Proof technique:
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Analogy
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Example

• Show that 1+2+… +n=n(n+1)/2, if n is a positive 
integer
– Let p(n) be the proposition that 1+2+… +n=n(n+1)/2

– Basis step: p(1) is true, because 1=1*(1+1)/2

– Inductive step: Assume p(k) is true for an arbitrary k. That is, 
1+2+…+k=k(k+1)/2

We must show that 1+2+…+(k+1)=(k+1)(k+2)/2

From p(k), 1+2+…+k+(k+1)=k(k+1)/2+(k+1)=(k+1)(k+2)/2

which means p(k+1) is true

– We have completed the basic and inductive steps, so by mathematical 
induction we know that p(n) is true for all positive integers n. That is 
1+2+…+n=n(n+1)/2
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Example

• Conjecture a formula for the sum of the first n 
positive odd integers. Then prove the conjecture 
using mathematical induction

• 1=1, 1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25

• It is reasonable to conjecture the sum of first n odd 
integers is n2, that is, 1+3+5+…+(2n-1)=n2

• We need a method to prove whether this conjecture 
is correct or not
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Example

• Let p(n) denote the proposition 

• Basic step: p(1)=12=1

• Inductive steps: Assume that p(k) is true, i.e., 1+3+5+…+(2k-
1)=k2

We must show 1+3+5+…+(2k+1)=(k+1)2 is true for p(k+1)

Thus,1+3+5+…+(2k-1)+(2k+1)=k2 +2k+1=(k+1)2 which means 
p(k+1) is true

(Note p(k+1) means 1+3+5+…+(2k+1)=(k+1)2)

• We have completed both the basis and inductive steps. That 
is, we have shown p(1) is true and p(k)p(k+1)

• Consequently, p(n) is true for all positive integers n
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Example

• Use mathematical induction to show that

1+2+22+…+2n=2n+1-1 

• Let p(n) be the proposition:  1+2+22+…+2n=2n+1-1 

• Basis step: p(0)=20+1-1=1

• Inductive step: Assume p(k) is true, i.e., 1+2+22+…+2k=2k+1-1

It follows 

(1+2+22+…+2k)+2k+1=(2k+1-1)+2k+1=2*2k+1-1=2k+2-1 which 
means p(k+1): 1+2+22+…+2k+1=2k+2-1 is true

• We have completed both the basis and inductive steps. By 
induction, we show that 1+2+22+…+2n=2n+1-1 
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Example

• In the previous step, p(0) is the basis step as 
the theorem is true ∀n p(n) for all non-
negative integers

• To use mathematical induction to show that 
p(n) is true for n=b, b+1, b+2, … where b is 
an integer other than 1, we show that p(b) 
is true, and then p(k)p(k+1) for k=b, 
b+1, b+2, …

• Note that b can be negative, zero, or positive 
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Example

• Use induction to show

• Basis step: p(0) is true as

• Inductive step: assume

• So p(k+1) is true. By induction, p(n) is true for all 
nonnegative integers    
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Example

• Use induction to show that n<2n for n>0

• Basis step: p(1) is true as 1<21=2 

• Inductive step: Assume p(k) is true, i.e., k<2k

We need to show k+1<2k+1

k+1<2k+1≤2k+2k=2k+1

Thus p(k+1) is true

• We complete both basis and inductive steps, 
and show that p(n) is true for all positive 
integers n
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Example

• Use induction to show that 2n<n! for n ≥ 4

• Let p(n) be the proposition, 2n<n! for n ≥ 4

• Basis step: p(4) is true as 24=16<4!=24

• Inductive step: Assume p(k) is true, i.e., 2k<k! for k ≥ 
4. We need to show that 2k+1<(k+1)! for k ≥ 4

2k+1 = 2 2k<2 k!<(k+1) k! = (k+1)!

This shows p(k+1) is true when p(k) is true

• We have completed basis and inductive steps. By 
induction, we show that p(n) is true for n ≥ 4
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Example

• Show that n3-n is divisible by 3 when n is positive

• Basis step: p(1) is true as 1-1=0 is divisible by 3

• Inductive step: Suppose p(k)= k3-k is true, we must 
show that (k+1)3-(k+1) is divisible by 3

(k+1)3-(k+1)=k3+3k2+3k+1-(k+1)=(k3-k)+3(k2+k)

As both terms are divisible by 3, (k+1)3-(k+1) is 
divisible by 3

• We have completed both the basis and inductive 
steps. By induction, we show that n3-n is divisible by 
3 when n is positive 
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Example

• Show that if S is a finite set with n elements, 
then S has 2n subsets

• Let p(n) be the proposition that a set with n 
elements has 2n subsets

• Basis step: p(0) is true as a set with zero 
elements, the empty set, has exactly 1 subset

• Inductive step: Assume p(k) is true, i.e., S has 
2k subsets if |S|=k. 
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Example

• Let T be a set with k+1 elements. So, T=S⋃{a}, and |S|=k

• For each subset X of S, there are exactly two subsets of T, 
i.e., X and X ⋃{a}

• Because there are 2k subsets of S, there are 2⋅2k=2k+1

subsets of T. This finishes the inductive step
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Example

• Use mathematical induction to show one of 
the De Morgan’s law:                  where A1, A2, 
…, An are subsets of a universal set U, and n≥2

• Basis step:                        (proved Section 2.2, 
page 131)

• Inductive step: Assume                 is true for k≥2
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Axioms for the set of positive 
integers
• See appendix 1

• Axiom 1: The number 1 is a positive integer

• Axiom 2: If n is a positive integer, then n+1, 
the successor of n, is also a positive integer

• Axiom 3: Every positive integer other than 1 is 
the successor of a positive integer

• Axiom 4: Well-ordering property  Every non-
empty subset of the set of positive integers 
has a least element 
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Why mathematical induction is 
valid?
• From mathematical induction, we know p(1) is true and the 

proposition p(k)p(k+1) is true for all positive integers

• To show that p(n) must be true for all positive integers, 
assume that there is at least one positive integer such that 
p(n) is false

• Then the set S of positive integers for which p(n) is false is 
non-empty

• By well-ordering property, S has a least element, which is 
demoted by m

• We know that m cannot be 1 as p(1) is true 

• Because m is positive and greater than 1, m-1 is a positive 
integer
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Why mathematical induction is 
valid?
• Because m-1 is less than m, it is not in S

• So p(m-1) must be true

• As the conditional statement p(m-1)p(m) is 
also true, it must be the case that p(m) is true

• This contradicts the choice of m

• Thus, p(n) must be true for every positive 
integer n
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Template for inductive proof



5.2 Strong induction and well-
ordering
• Strong induction: To prove p(n) is true for all 

positive integers n, where p(n) is a 
propositional function, we complete two steps

• Basis step: we verify that the proposition p(1) 
is true

• Inductive step: we show that the conditional 
statement (p(1)∧p(2) ∧… ∧p(k))→p(k+1) is 
true for all positive integers k
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Strong induction

• Can use all k statements, p(1), p(2), …, p(k) to prove 
p(k+1) rather than just p(k) 

• Mathematical induction and strong induction are 
equivalent

• Any proof using mathematical induction can also be 
considered to be a proof by strong induction 
(induction  strong induction)

• It is more awkward to convert a proof by strong 
induction to one with mathematical induction  
(strong induction  induction)
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Strong induction

• Also called the second principle of mathematical 
induction or complete induction

• The principle of mathematical induction is called 
incomplete induction, a term that is somewhat 
misleading as there is nothing incomplete

• Analogy:

– If we can reach the first step

– For every integer k, if we can reach all the first k steps, 
then we can reach the k+1 step
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Example

• Suppose we can reach the 1st and 2nd rungs of 
an infinite ladder

• We know that if we can reach a rung, then we 
can reach two rungs higher

• Can we prove that we can reach every rung 
using the principle of mathematical induction? 
or strong induction?

23



Example – mathematical induction

• Basis step: we verify we can reach the 1st rung

• Attempted inductive step: the inductive hypothesis is 
that we can reach the k-th rung

• To complete the inductive step, we need to show 
that we can reach k+1-th rung based on the 
hypothesis

• However, no obvious way to complete this inductive 
step (because we do not know from the given 
information that we can reach the k+1-th rung from 
the k-th rung)
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Example – strong induction

• Basis step: we verify we can reach the 1st rung

• Inductive step: the inductive hypothesis states that we can 
reach each of the first k rungs

• To complete the inductive step, we need to show that we can 
reach k+1-th rung

• We know that we can reach 2nd rung. 

• We note that we can reach the (k+1)-th rung from (k-1)-th 
rung we can climb 2 rungs from a rung that we already reach

• This completes the inductive step and finishes the proof by 
strong induction
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Which one to use

• Try to prove with mathematical induction first

• Unless you can clearly see the use of strong 
induction for proof
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5.2 Strong induction and well-
ordering
• Use strong induction to show that if n is an 

integer greater than 1, then n can be written 
as the product of primes

• Let p(n) be the proposition that n can be 
written as the product of primes

• Basis step: p(2) is true as 2 can be written as 
the product of one prime, itself

• Inductive step: Assume p(k) is true with the 
assumption that p(j) is true for j≤k
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Proof with strong induction

• That is, j (j≤k) can be written as a product of 
primes

• To complete the proof, we need to show 
p(k+1) is true (i.e., k+1 can be written as a 
product of primes)

• There are two cases: when k+1 is prime or 
composite 

• If k+1 is prime, we immediately see that 
p(k+1) is true
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Proof with strong induction 

• If k+1 is composite and can be written as a 
product of two positive integers a and b, with 
2≤a≤b<k+1

• By inductive hypothesis, both a and b can be 
written as product of primes

• Thus, if k+1 is composite, it can be written as 
the product of primes, namely, the primes in 
the factorization of a and those in the 
factorization of b
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Proof with induction

• Prove that every amount of postage of 12 cents or 
more can be formed using just 4-cent and 5-cent 
stamps

• First use mathematical induction for proof

• Basis step: Postage of 12 cents can be formed using 3 
4-cent stamps

• Inductive step: The inductive hypothesis assumes 
p(k) is true

• That is, we need to sure p(k+1) is true when k≥12
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Proof induction

• Suppose that at least one 4-cent stamp is used to form 
postage of k cents

• We can replace this stamp with 5-cent stamp to form postage 
of k+1 cents

• If no 4-cent stamps are used, we can form postage of k cents 
using only 5-cent stamps

• As k≥12, we need at least 3 5-cent stamps to form postage of 
k cents

• So, we can replace 3 5-cent stamps with 4 4-cent stamps for 
k+1 cents

• As we have completed basis and inductive steps, we know 
p(n) is true for n≥12
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Proof with strong induction

• Use strong induction for proof

• In the basis step, we show that p(12), p(13), p(14) 
and p(15) are true

• In the inductive step, we show that how to get 
postage of k+1 cents for k≥15 from postage of k-3 
cents

• Basis step: we can form postage of 12, 13, 14, 15 
cents using 3 4-cent stamps, 2 4-cent/1 5-cent 
stamps, 2 5-cent/1 4-cent stamps, and 3 5-cent 
stamps. So p(12), p(13), p(14), p(15) are true
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Proof with strong induction 

• Inductive step: The inductive hypothesis is the statement p(j) 
is true for 12≤j ≤k, where k is an integer with k≥15. We need 
to show p(k+1) is true 

• We can assume p(k-3) is true because k-3 ≥12, that is, we can 
form postage of k-3 cents using just 4-cent and 5-cent stamps

• To form postage of k+1 cents, we need only add another 4-
cent stamp to the stamps we used to form postage of k-3 
cents. That is, we show p(k+1) is true

• As we have completed basis and inductive steps of a strong 
induction, we show that p(n) is true for n≥12

• There are other ways to prove this

33



Proofs using well-ordering 
property
• Validity of both the principle of mathematical induction and 

strong induction follows from a fundamental axiom of the set 
of integers, the well-ordering property

• Well-order property: every non-empty set of non-negative 
integers has a least element

• The well-ordering property can be used directly in proofs

• The well-ordering property, the principle of mathematical 
induction, and strong induction are all equivalent
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5.3 Recursive definitions and 
structural induction

35
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Recursive definitions

• The sequence of powers of 2 is given by an=2n for 
n=0, 1, 2, …

• Can also be defined by a0=1, and a rule for finding a 
term of the sequence from the previous one, i.e., 
an+1=2an

• Can use induction to prove results about the 
sequence

• Structural induction: We define a set recursively by 
specifying some initial elements in a basis step and 
provide a rule for constructing new elements from 
those already in the recursive step

36



Recursively defined functions

• Use two steps to define a function with the set 
of non-negative integers as its domain

• Basis step: specify the value for the function 
at zero

• Recursive step: give a rule for finding its value 
at an integer from its values at smaller 
integers

• Such a definition is called a recursive or 
inductive definition
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Example

• Suppose f is defined recursively by

– f(0)=3

– f(n+1)=2f(n)+3

Find f(1), f(2), f(3), and f(4)

– f(1)=2f(0)+3=2*3+3=9

– f(2)=2f(1)+3=2*9+3=21

– f(3)=2f(2)+3=2*21+3=45

– f(4)=2f(3)+3=2*45+3=93
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Example

• Give an inductive definition of the factorial 
function f(n)=n!

• Note that (n+1)!=(n+1)∙n!

• We can define f(0)=1 and f(n+1)=(n+1)f(n)

• To determine a value, e.g., f(5)=5!, we can use 
the recursive function

f(5)=5∙f(4)=5∙4∙f(3)=5∙4∙3∙f(2)=5∙4∙3∙2∙f(1) 
=5∙4∙3∙2∙1∙f(0)=5∙4∙3∙2∙1∙1=120
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Recursive functions

• Recursively defined functions are well defined

• For every positive integer, the value of the 
function is determined in an unambiguous 
way

• Given any positive integer, we can use the two 
parts of the definition to find the value of the 
function at that integer

• We obtain the same value no matter how we 
apply two parts of the definition
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Example

• Given a recursive definition of an, where a is a 
non-zero real number and n is a non-negative 
integer

• Note that an+1=a∙an and a0=1

• These two equations uniquely define an  for all 
non-negative integer n
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Example

• Given a recursive definition of

• The first part of the recursive definition

• The second part is

42




n

k

ka
0

0

0

0

aa
k

k 












n

k

nk

n

k

k aaa
0

1

1

0

)(



Example – Fibonacci numbers

• Fibonacci numbers f0, f1, f2, are defined by the 
equations, f0=0, f1=1, and fn=fn-1+fn-2 for n=2, 3, 4, …

• By definition

f2=f1+f0=1+0=1

f3=f2+f1=1+1=2

f4=f3+f2=2+1=3

f5=f4+f3=3+2=5

f6=f5+f4=5+3=8
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Example

• Use strong induction to show when n≥3, fn>𝛼n-2

where fn is a Fibonacci number and 

• Let p(n) be the proposition that fn>𝛼n-2

• Basis step: note that  

so that p(3) and p(4) are true

• Inductive step: assume p(j) is true, i.e., fj>𝛼
j-2 with 

3≤j ≤k where k≥4. We need to show that p(k+1) 
is true, i.e., fk>𝛼k-2
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Example

• First note that 𝛼 is a solution to x2-x-1=0, so 
𝛼 2=𝛼+1, thus

• By inductive hypothesis, if k≥4, it follows   
fk-1>𝛼k-3 , fk>𝛼k-2 

• So,   

It follows that p(k+1) is true. This 
completes the proof
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Recursively defined sets and 
structures
• Consider the subset S of the set of integers 

defined by

– Basis step: 3∊S

– Recursive step: if x∊S and y∊S, then x+y∊S

• The new elements formed by this are 
3+3=6, 3+6=9, 6+6=12, …

• We will show that S is the set of all positive 
multiples of 3 (using structural induction)
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String

• The set ∑* of strings over the alphabet ∑ can be defined 
recursively by

– Basis step: 𝜆∊∑* (where 𝜆 is the empty string containing no 
symbols)

– Recursive step: if w∊∑* and x∊∑ then wx ∊∑*

• The basis step defines that the empty string belongs to 
string

• The recursive step states new strings are produced by 
adding a symbol from ∑ to the end of stings in ∑*

• At each application of the recursive step, strings containing 
one additional symbol are generated
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Example

• If ∑={0, 1}, the strings found to be in ∑*, the 
set of all bit strings, are 

• 𝜆, specified to be in ∑* in the basis step

• 0 and 1 found in the 1st recursive step

• 00, 01, 10, and 11 are found in the 2nd

recursive step, and so on
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Concatenation

• Two strings can be combined via the operation of 
concatenation

• Let ∑ be a set of symbols and ∑* be the set of strings 
formed from symbols in ∑

• We can define the concatenation for two strings by 
recursive steps

– Basis step: if w∊∑*, then w∙𝜆=w, where 𝜆 is the empty string

– Recursive step: If w1∊∑*, w2∊∑* and x ∊∑, then w1 ∙ (w2 x)=(w1 ∙ 
w2)x

– Oftentimes w1 ∙ w2 is rewritten as w1w2

– e.g., w1=abra, and w2=cadabra, w1w2=abracadabra

49



Length of a string

• Give a recursive definition of l(w), the length 
of a string w

• The length of a string is defined by

– l(𝜆)=0

– l(wx)=l(w)+1 if w∊∑* and x∊∑ 
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Well-formed formulae

• We can define the set of well-formed formulae for compound 
statement forms involving T, F, proposition variables and 
operators from the set {┐, ˄, ˅, →, ↔}

• Basis step: T, F, and s, where s is a propositional variable 
are well-formed formulae

• Recursive step: If E and F are well-formed formulae, then 
┐E, E˄F, E ˅F, E→F, E ↔F are well-formed formulae

• From an initial application of the recursive step, we know that 
(p˅q), (p→F), (F→q) and (q˄F) are well-formed formulae

• A second application of the recursive step shows that ((p˅q) 

→(q˄F)), (q˅(p˅q)), and ((p→F)→T) are well-formed 

formulae

51



Rooted trees

• The set of rooted trees, where a rooted tree consists 
of a set of vertices containing a distinguished vertex 
called the root, and edges connecting these vertices, 
can be defined recursively by

– Basis step: a single vertex r is a rooted tree

– Recursive step: suppose that T1, T2, …, Tn are disjoint 
rooted trees with roots r1, r2, …, rn, respectively. 

– Then the graph formed by starting with a root r, which is 
not in any of the rooted trees T1, T2, …, Tn, and adding an 
edge from r to each of the vertices r1, r2, …, rn, is also a 
rooted tree
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Rooted trees
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Binary trees

• At each vertex, there are at most two 
branches (one left subtree and one right 
subtree)

• Extended binary trees: the left subtree or the 
right subtree can be empty

• Full binary trees: must have left and right 
subtrees
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Extended binary trees

• The set of extended binary trees can be 
defined by

– Basis step: the empty set is an extended binary 
tree

– Recursive step: If T1 and T2 are disjoint extended 
binary trees, there is an extended binary tree, 
denoted by T1 ∙ T2, consisting of a root r together 
with edges connecting the root to each of the 
roots of the left subtree T1 and right subtree T2, 
when these trees are non-empty
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Extended binary trees
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Full binary trees

• The set of full binary trees can be defined 
recursively

– Basis step: There is a full binary tree consisting 
only of a single vertex r

– Recursive step: If T1 and T2 are disjoint full binary 
trees, there is a full binary tree, denoted by T1 ∙ T2, 
consisting of a root r together with edges 
connecting the root to each of the roots of the 
left subtree T1 and right subtree T2
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Full binary tree
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Structural induction

• Show that the set S defined by 

– 3∊S and 

– if x∊S and y∊S, then x+y∊S, 

is the set of multiples of 3

• Let A be the set of all positive integers divisible by 3

• To prove A=S, we must show that A⊆S, and S⊆A

• To show A⊆S, we must show that every positive 
integer divisible by 3 is in S

• Use mathematical induction to prove it
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Structural induction

• Let p(n) be the statement that 3n belongs to S

• Basis step: it holds as the first part of recursive 
definition of S, 3⋅1=3∊S

• Inductive step: assume that p(k) is true, i.e., 
3k is in S. As 3k∊S and 3∊S, it follows from 
the 2nd part of the recursive definition of S 
that 3k+3=3(k+1)∊S. So p(k+1) is true
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Structural induction

• To show that S⊆A, we use recursive definition of S

• The basis step of the definition specifies that 3 is in S

• As 3=3⋅1, all elements specified to be in S in this step are 
divisible by 3, and there in A

• To finish the proof, we need to show that all integers in S 
generated using the 2nd part of the recursive definition are 
in A

• This consists of showing that x+y is in A whenever x and y are 
elements of S also assumed to be in A

• If x and y are both in A, it follows that 3|x, 3|y, and thus 
3|x+y, thereby completing the proof 
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Trees and structural induction

• To prove properties of trees with structural 
induction

– Basis step: show that the result is true for the tree 
consisting of a single vertex

– Recursive step: show that if the result is true for 
the trees T1 and T2, then it is true for T1⋅T2, 
consisting of a root r, which has T1 as its left 
subtree and T2 as its right subtree
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Height of binary tree

• We define the height h(T) of a full binary tree 
T recursively

– Basis step: the height of the full binary tree T 
consisting of only a root r is h(T)=0

– Recursive step: If T1 and T2 are full binary trees, 
then the full binary tree T= T1⋅ T2 has height 
h(T)=1+max(h(T1), h(T2))
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Number of vertices in a binary tree

• If we let n(T) denote the number of vertices in 
a full binary tree, we observe that n(T) 
satisfies the following recursive formula:

– Basis step: the number of vertices n(T) of the full 
binary tree consisting of only a root r is n(T)=1

– Recursive step: If T1 and T2 are full binary trees, 
then the number of vertices of the full binary tree 
T= T1⋅ T2 is n(T)=1+n(T1)+n(T2) 
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Theorem

• If T is a full binary tree T, then n(T)≤2h(T)+1-1

• Use structural induction to prove this

• Basis step: for the full binary tree consisting of 
just the root r the result is true as n(T)=1 and 
h(T)=0, so n(T)=1≤20+1-1=1

• Inductive step: For the inductive hypothesis 
we assume that                                            

where T1 and T2 are full binary trees
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Theorem

• By the recursive formulae for n(T) and h(T), we have 
n(T)=1+n(T1)+n(T2) and h(T)=1+max(h(T1), h(T2))

• Thus, 

• This completes the inductive step
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