5.1 Mathematical induction
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 Want to know whether we can
reach every step of this ladder

— We can reach first rung of the
ladder

— If we can reach a particular run of
the ladder, then we can reach the
next run

* Mathematical induction: show
that p(n) is true for every
positive integer n




Mathematical induction

* Two steps
— Basis step: show that p(1) is true

— Inductive step: show that for all positive integers
k, if p(k) is true, then p(k+1) is true. That is, we
show p(k)—=2p(k+1) for all positive integers k

 The assumption p(k) is true is called the
inductive hypothesis

* Proof technique:
[P A VK(p(k) = p(k+1))]— Vnp(n)



Analogy




Example

* Show that 1+2+... +n=n(n+1)/2, if n is a positive

Integer
— Let p(n) be the proposition that 1+2+... +n=n(n+1)/2
— Basis step: p(1) is true, because 1=1*(1+1)/2

— Inductive step: Assume p(k) is true for an arbitrary k. That is,
1+2+...+k=k(k+1)/2

We must show that 1+2+...+(k+1)=(k+1)(k+2)/2
From p(k), 1+2+...+k+(k+1)=k(k+1)/2+(k+1)=(k+1)(k+2)/2
which means p(k+1) is true

— We have completed the basic and inductive steps, so by mathematical
induction we know that p(n) is true for all positive integers n. That is
1+2+...+n=n(n+1)/2



Example

e Conjecture a formula for the sum of the first n
positive odd integers. Then prove the conjecture
using mathematical induction

e 1=1, 1+3=4, 1+3+5=9, 1+3+5+7=16, 1+3+5+7+9=25

* |tisreasonable to conjecture the sum of first n odd
integers is n?, that is, 1+3+5+...+(2n-1)=n?

* We need a method to prove whether this conjecture
IS correct or not



Example

e Let p(n) denote the proposition

e Basic step: p(1)=1%=1

e Inductive steps: Assume that p(k) is true, i.e., 1+3+5+...+(2k-
1)=k?
We must show 1+3+5+...+(2k+1)=(k+1)? is true for p(k+1)

Thus,1+3+5+...+(2k-1)+(2k+1)=k? +2k+1=(k+1)%? which means
p(k+1) is true

(Note p(k+1) means 1+3+5+...+(2k+1)=(k+1)?2)

 We have completed both the basis and inductive steps. That
is, we have shown p(1) is true and p(k)=2>p(k+1)

* Consequently, p(n) is true for all positive integers n



Example

Use mathematical induction to show that
1+2+22+...+2n=2"+1_1

Let p(n) be the proposition: 1+2+2%+...+2"=2"*1-1

Basis step: p(0)=2°*1-1=1

Inductive step: Assume p(k) is true, i.e., 1+2+22+...+2k=2k*1-1
It follows

(142+422+...+2K)+2k+1=(2k+1.7 )4 2k+1= * k+1_1 =9k+2_1 which
means p(k+1): 1+2+22+...+2k*1=2k*2_1 is true

We have completed both the basis and inductive steps. By
induction, we show that 1+2+22+...+2"=2n*1_1



Example

* |n the previous step, p(0) is the basis step as
the theorem is true Vn p(n) for all non-
negative integers

* To use mathematical induction to show that
p(n) is true for n=b, b+1, b+2, ... where b is
an integer other than 1, we show that p(b)
is true, and then p(k)=2p(k+1) for k=b,
b+1,b+2, ...

* Note that b can be negative, zero, or positive
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Example
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Example

e Use induction to show that n<2"for n>0

* Basis step: p(1) is true as 1<21=2

* Inductive step: Assume p(k) is true, i.e., k<2X
We need to show k+1<2k+1
k+1<2k+1<2k+2k=2k+1
Thus p(k+1) is true

 We complete both basis and inductive steps,
and show that p(n) is true for all positive
integers n y



Example

* Use induction to show that 2"<n! forn >4
* Let p(n) be the proposition, 2"<n! forn >4
* Basis step: p(4) is true as 24=16<4!=24

* Inductive step: Assume p(k) is true, i.e., 2k<k! for k >
4. We need to show that 2k*1<(k+1)! for k > 4

2kl = 2 2k« kl<(k+1) k! = (k+1)!
This shows p(k+1) is true when p(k) is true

 We have completed basis and inductive steps. By
induction, we show that p(n) is true for n > 4
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Example

* Show that n3-n is divisible by 3 when n is positive

e Basis step: p(1) is true as 1-1=0 is divisible by 3

* |Inductive step: Suppose p(k)= k3-k is true, we must
show that (k+1)3-(k+1) is divisible by 3
(k+1)3-(k+1)=k3+3k2+3k+1-(k+1)=(k3-k)+3(k2+k)
As both terms are divisible by 3, (k+1)3-(k+1) is
divisible by 3

 We have completed both the basis and inductive

steps. By induction, we show that n3-n is divisible by
3 when n is positive
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Example

e Show that if Sis a finite set with n elements,
then S has 2" subsets

* Let p(n) be the proposition that a set with n
elements has 2" subsets

e Basis step: p(0) is true as a set with zero
elements, the empty set, has exactly 1 subset

* Inductive step: Assume p(k) is true, i.e., S has
2K subsets if |S|=k.
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Example

* LetT be aset with k+1 elements. So, T=SU{a}, and |S|=k

* For each subset X of S, there are exactly two subsets of T,
i.e, X and X U{a}

* Because there are 2X subsets of S, there are 2-2k=2k+1
subsets of T. This finishes the inductive step

/
™
&)
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Example

e Use mathematical induction to show one of
the De Morgan’s law: ~a -=0a wWhere A, A,,

R R

., A, are subsets of a universal set U, and n>2

* Basis step: AnA=AuUA (proved Section 2.2,
page 131)

(] k T~ .
* |Inductive step: Assume qAJ VA is true for k=2

k+1

_1 J_(mA)mAkﬂ (mA)UAi(+]_

k+1_

—(uA)uAm—uA
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Axioms for the set of positive
Integers

See appendix 1
Axiom 1: The number 1 is a positive integer

Axiom 2: If n is a positive integer, then n+1,
the successor of n, is also a positive integer

Axiom 3: Every positive integer other than 1 is
the successor of a positive integer

Axiom 4: Well-ordering property Every non-
empty subset of the set of positive integers
has a least element
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Why mathematical induction is
valid?

From mathematical induction, we know p(1) is true and the
proposition p(k)=2>p(k+1) is true for all positive integers

To show that p(n) must be true for all positive integers,
assume that there is at least one positive integer such that
p(n) is false

Then the set S of positive integers for which p(n) is false is
non-empty

By well-ordering property, S has a least element, which is
demoted by m

We know that m cannot be 1 as p(1) is true

Because m is positive and greater than 1, m-1 is a positive

integer
17



Why mathematical induction is
valid?

Because m-1is less than m, itisnotinS
So p(m-1) must be true

As the conditional statement p(m-1)—=2>p(m) is
also true, it must be the case that p(m) is true

This contradicts the choice of m

Thus, p(n) must be true for every positive
Integer n
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Template for inductive proof

Template for Proofs by Mathematical Induction

1;

(o8}

Express the statement that is to be proved in the form “for all n > b, P(n)” for a fixed
integer b.

Write out the words “Basis Step.” Then show that P (b) is true, taking care that the correct
value of b is used. This completes the first part of the proof.

. Write out the words “Inductive Step.”

State, and clearly identify, the inductive hypothesis, in the form “assume that P (k) is true
for an arbitrary fixed integer k > b.”

State what needs to be proved under the assumption that the inductive hypothesis is true.
That is, write out what P (k + 1) says.

Prove the statement P (k + 1) making use the assumption P (k). Be sure that your proof
is valid for all integers k with k > b, taking care that the proof works for small values
of k, including k = b.

Clearly identify the conclusion of the inductive step, such as by saying “this completes
the inductive step.”

. After completing the basis step and the inductive step, state the conclusion, namely that

by mathematical induction, P (n) is true for all integers n with n > b.



5.2 Strong induction and well-
ordering

e Strong induction: To prove p(n) is true for all
positive integers n, where p(n) is a
propositional function, we complete two steps

e Basis step: we verify that the proposition p(1)
IS true

* Inductive step: we show that the conditional

statement (p(1)Ap(2) A... Ap(K))—=p(k+1) is
true for all positive integers k
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Strong induction

e Can use all k statements, p(1), p(2), ..., p(k) to prove
p(k+1) rather than just p(k)

 Mathematical induction and strong induction are
equivalent

* Any proof using mathematical induction can also be
considered to be a proof by strong induction
(induction = strong induction)

* |tis more awkward to convert a proof by strong
induction to one with mathematical induction
(strong induction = induction)

21



Strong induction

e Also called the second principle of mathematical
induction or complete induction

* The principle of mathematical induction is called
incomplete induction, a term that is somewhat
misleading as there is nothing incomplete

* Analogy:

— If we can reach the first step

— For every integer k, if we can reach all the first k steps,
then we can reach the k+1 step

22



Example

* Suppose we can reach the 15t and 2"9 rungs of
an infinite ladder

 We know that if we can reach a rung, then we
can reach two rungs higher

* Can we prove that we can reach every rung
using the principle of mathematical induction?
or strong induction?

23



Example — mathematical induction

e Basis step: we verify we can reach the 15t rung

* Attempted inductive step: the inductive hypothesis is
that we can reach the k-th rung

 To complete the inductive step, we need to show
that we can reach k+1-th rung based on the
hypothesis

 However, no obvious way to complete this inductive
step (because we do not know from the given
information that we can reach the k+1-th rung from
the k-th rung)
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Example — strong induction

e Basis step: we verify we can reach the 15t rung

* Inductive step: the inductive hypothesis states that we can
reach each of the first k rungs

 To complete the inductive step, we need to show that we can
reach k+1-th rung

* We know that we can reach 2" rung.

* We note that we can reach the (k+1)-th rung from (k-1)-th
rung we can climb 2 rungs from a rung that we already reach

* This completes the inductive step and finishes the proof by
strong induction

25



Which one to use

* Try to prove with mathematical induction first

* Unless you can clearly see the use of strong
induction for proof

26



5.2 Strong induction and well-
ordering

e Use strong induction to show that if nis an
integer greater than 1, then n can be written
as the product of primes

e Let p(n) be the proposition that n can be
written as the product of primes

e Basis step: p(2) is true as 2 can be written as
the product of one prime, itself

* Inductive step: Assume p(k) is true with the
assumption that p(j) is true for j<k
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Proof with strong induction

 Thatis, j (j<k) can be written as a product of
primes

* To complete the proof, we need to show
p(k+1) is true (i.e., k+1 can be written as a
product of primes)

* There are two cases: when k+1 is prime or
composite

e |f k+1 is prime, we immediately see that
p(k+1) is true

28



Proof with strong induction

e |f k+1 is composite and can be written as a
product of two positive integers a and b, with
2<a<b<k+1

* By inductive hypothesis, both a and b can be
written as product of primes

* Thus, if k+1 is composite, it can be written as
the product of primes, namely, the primes in
the factorization of a and those in the
factorization of b

29



Proof with induction

* Prove that every amount of postage of 12 cents or
more can be formed using just 4-cent and 5-cent
stamps

* First use mathematical induction for proof

e Basis step: Postage of 12 cents can be formed using 3
4-cent stamps

* |Inductive step: The inductive hypothesis assumes
p(k) is true

 That is, we need to sure p(k+1) is true when k=12

30



Proof induction

e Suppose that at least one 4-cent stamp is used to form
postage of k cents

* We can replace this stamp with 5-cent stamp to form postage
of k+1 cents

* If no 4-cent stamps are used, we can form postage of k cents
using only 5-cent stamps

* As k=12, we need at least 3 5-cent stamps to form postage of
k cents

* So, we can replace 3 5-cent stamps with 4 4-cent stamps for
k+1 cents

* As we have completed basis and inductive steps, we know

p(n) is true for n>12
31



Proof with strong induction

e Use strong induction for proof

* In the basis step, we show that p(12), p(13), p(14)
and p(15) are true

* In the inductive step, we show that how to get
postage of k+1 cents for k=15 from postage of k-3
cents

e Basis step: we can form postage of 12, 13, 14, 15
cents using 3 4-cent stamps, 2 4-cent/1 5-cent
stamps, 2 5-cent/1 4-cent stamps, and 3 5-cent
stamps. So p(12), p(13), p(14), p(15) are true

32



Proof with strong induction

* Inductive step: The inductive hypothesis is the statement p(j)
is true for 12<j <k, where k is an integer with k=15. We need

to show p(k+1) is true

 We can assume p(k-3) is true because k-3 212, that is, we can
form postage of k-3 cents using just 4-cent and 5-cent stamps

* To form postage of k+1 cents, we need only add another 4-
cent stamp to the stamps we used to form postage of k-3
cents. That is, we show p(k+1) is true

* As we have completed basis and inductive steps of a strong
induction, we show that p(n) is true for n>12

* There are other ways to prove this
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Proofs using well-ordering
property

* Validity of both the principle of mathematical induction and
strong induction follows from a fundamental axiom of the set
of integers, the well-ordering property

 Well-order property: every non-empty set of non-negative
integers has a least element

 The well-ordering property can be used directly in proofs

 The well-ordering property, the principle of mathematical
induction, and strong induction are all equivalent
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5.3 Recursive definitions and
structural induction

ights reserved.

1.4

A recursively defined picture
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Recursive definitions

* The sequence of powers of 2 is given by a_=2" for
n=0, 1, 2, ...

* Can also be defined by a,=1, and a rule for finding a
term of the sequence from the previous one, i.e.,
a,,1=2a,

e Can use induction to prove results about the
sequence

n+1=

e Structural induction: We define a set recursively by
specifying some initial elements in a basis step and
provide a rule for constructing new elements from
those already in the recursive step

36



Recursively defined functions

* Use two steps to define a function with the set
of non-negative integers as its domain

e Basis step: specify the value for the function
at zero

* Recursive step: give a rule for finding its value
at an integer from its values at smaller
Integers

 Such a definition is called a recursive or
inductive definition

37



Example

e Suppose fis defined recursively by
— f(0)=3
— f(n+1)=2f(n)+3
Find f(1), f(2), f(3), and f(4)
— f(1)=2f(0)+3=2*3+3=9
— f(2)=2f(1)+3=2*9+3=21
— f(3)=2f(2)+3=2*21+3=45
— (4)=2f(3)+3=2*45+3=93

38



Example

* Give an inductive definition of the factorial
function f(n)=n!

* Note that (n+1)!=(n+1)'n!

 We can define f(0)=1 and f(n+1)=(n+1)f(n)

 To determine a value, e.g., f(5)=5!, we can use
the recursive function

f(5)=5-f(4)=5-4-f(3)=5-4-3-f(2)=5-4-3-2-f(1)
=5-4-3-2:1-f(0)=54-3-2:1-1=120

39



Recursive functions

* Recursively defined functions are well defined

* For every positive integer, the value of the
function is determined in an unambiguous
way

* Given any positive integer, we can use the two
parts of the definition to find the value of the
function at that integer

e We obtain the same value no matter how we
apply two parts of the definition

40



Example

* Given a recursive definition of a", where a is a

non-zero real number and n is a non-negative
Integer

* Note that a"*'=a-a" and a%=1

* These two equations uniquely define a" for all
non-negative integer n

41



Example

* Given a recursive definition of Za
 The first part of the recursive definition
§%=%
 The second part is
:Z:l;ak =(kZ:;ak)+an+l
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Example — Fibonacci numbers

* Fibonacci numbers f,, f,, f,, are defined by the
equations, f,=0, f;=1, and f_=f_,+f ,forn=2, 3, 4, ...

e By definition
f,=f,+f,;=1+0=1
fo=f,+f;=1+1=2
f,=f3+f,=2+1=3
fo=f,+f;=3+2=5
fo=f.+f,=5+3=8
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Example

* Use strong induction to show when n=>3, f >a"?
where f_ is a Fibonacci number and = (1++/5)/2

* Let p(n) be the proposition that f >a"2
* Basis step: note that
a<2="f,a?=(3+5)/2<3=f,
so that p(3) and p(4) are true

* Inductive step: assume p(j) is true, i.e., f>a)* with
3<j <k where k=4. We need to show that p(k+1)
is true, i.e., f, >ak?
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Example

* First note that a is a solution to x4-x-1=0, so
a?=a+1, thus

k-1 2 k-3

=’ =(a+)ad" P ="+ 0"

* By inductive hypothesis, if k>4, it follows
f, >ak3, f,>ak?

_ k=2 _
e So, f,=f+f > " +a" =«

[t follows that p(k+1) is true. This
completes the proof
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Recursively defined sets and
structures

* Consider the subset S of the set of integers
defined by

— Basis step: 3€S
— Recursive step: if xe$S and ye€S, then x+yeS

 The new elements formed by this are
3+3=6,3+6=9, 6+6=12, ...

 We will show that S is the set of all positive
multiples of 3 (using structural induction)
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String

* The set );* of strings over the alphabet ), can be defined
recursively by

— Basis step: A€) * (where A is the empty string containing no
symbols)

— Recursive step: if we) * and x€); then wx €} *

* The basis step defines that the empty string belongs to
string

* The recursive step states new strings are produced by
adding a symbol from ); to the end of stings in ) *

* At each application of the recursive step, strings containing
one additional symbol are generated
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Example

* If >={0, 1}, the strings found to be in ) *, the
set of all bit strings, are

* A, specified to be in ) * in the basis step
* 0 and 1 found in the 15t recursive step

* 00,01, 10, and 11 are found in the 2nd
recursive step, and so on

48



Concatenation

e Two strings can be combined via the operation of
concatenation

* Let ), be asetof symbols and ) * be the set of strings
formed from symbols in );

* We can define the concatenation for two strings by
recursive steps
— Basis step: if we) *, then w-A=w, where A is the empty string
— Recursive step: If w,€)* w,€)* and x €}, then w, - (w,X)=(w, -
W,)X
— Oftentimes w, * w, is rewritten as w,w,

— e.g.,, w,=abra, and w,=cadabra, w,w,=abracadabra
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Length of a string

e Give a recursive definition of I(w), the length
of a string w

 The length of a string is defined by
—1(1)=0
— l(wx)=l(w)+1 if we) * and x€);
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Well-formed formulae

We can define the set of well-formed formulae for compound
statement forms involving T, F, proposition variables and
operators from the set {, A, V, —, &}

Basis step: T, F and s, where s is a propositional variable
are well-formed formulae

Recursive step: If E and F are well-formed formulae, then
1 E, EAF, E VE, E—F, E ©F are well-formed formulae

From an initial application of the recursive step, we know that
(pVq), (p—F), (F—q) and (qAF) are well-formed formulae

A second application of the recursive step shows that ((pVq)
—(gqAF)), (qV(pVq)), and ((p—F)—T) are well-formed
formulae
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Rooted trees

* The set of rooted trees, where a rooted tree consists
of a set of vertices containing a distinguished vertex
called the root, and edges connecting these vertices,
can be defined recursively by

— Basis step: a single vertex r is a rooted tree

— Recursive step: suppose that T,, T,, ..., T are disjoint
rooted trees with roots r;, r,, ..., r, respectively.

— Then the graph formed by starting with a root r, which is
not in any of the rooted trees T, T,, ..., T, and adding an
edge from r to each of the verticesr,, r,, ..., r,, is also a
rooted tree
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Rooted trees

Basis step




Binary trees

* At each vertex, there are at most two
branches (one left subtree and one right

SU

btree)

* Extended binary trees: the left subtree or the
right subtree can be empty

* Fu
su

| binary trees: must have left and right

otrees
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Extended binary trees

* The set of extended binary trees can be
defined by

— Basis step: the empty set is an extended binary
tree

— Recursive step: If T, and T, are disjoint extended
binary trees, there is an extended binary tree,
denoted by T, - T,, consisting of a root r together
with edges connecting the root to each of the
roots of the left subtree T, and right subtree T,,
when these trees are non-empty
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Extended binary trees
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Full binary trees

* The set of full binary trees can be defined
recursively

— Basis step: There is a full binary tree consisting
only of a single vertexr

— Recursive step: If T, and T, are disjoint full binary
trees, there is a full binary tree, denoted by T, - T,
consisting of a root r together with edges

connecting the root to each of the roots of the
left subtree T, and right subtree T,
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Full binary tree

© The McGraw-Hill Companies, Inc. all rights reserved.
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Structural induction

 Show that the set S defined by
— 3eS and
— if xe§S and yeS, then x+yeS,
is the set of multiples of 3

* Let A be the set of all positive integers divisible by 3
* To prove A=S, we must show that ACS, and SEA

* To show ACS, we must show that every positive
integer divisible by 3isin S
* Use mathematical induction to prove it
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Structural induction

e Let p(n) be the statement that 3n belongs to S

e Basis step: it holds as the first part of recursive
definition of S, 3:1=3€S

* Inductive step: assume that p(k) is true, i.e.,
3kisin S. As 3keS and 3€S, it follows from
the 2"d part of the recursive definition of S
that 3k+3=3(k+1)eS. So p(k+1) is true
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Structural induction

* To show that S€A, we use recursive definition of S
* The basis step of the definition specifies that 3isin S

 As 3=3-1, all elements specified to be in S in this step are
divisible by 3, and there in A

* To finish the proof, we need to show that all integers in S
generated using the 2" part of the recursive definition are
in A

* This consists of showing that x+y is in A whenever x and y are
elements of S also assumed to be in A

e |fxandy arebothinA, it follows that 3|x, 3|y, and thus
3| x+y, thereby completing the proof
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Trees and structural induction

* To prove properties of trees with structural
induction

— Basis step: show that the result is true for the tree
consisting of a single vertex

— Recursive step: show that if the result is true for
the trees T, and T,, then it is true for T,-T,,

consisting of a root r, which has T, as its left
subtree and T, as its right subtree
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Height of binary tree

 We define the height h(T) of a full binary tree
T recursively

— Basis step: the height of the full binary tree T
consisting of only a root ris h(T)=0

— Recursive step: If T, and T, are full binary trees,
then the full binary tree T=T,- T, has height
h(T)=1+max(h(T,), h(T,))
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Number of vertices in a binary tree

* |f we let n(T) denote the number of vertices in
a full binary tree, we observe that n(T)
satisfies the following recursive formula:

— Basis step: the number of vertices n(T) of the full
binary tree consisting of only a root r is n(T)=1

— Recursive step: If T, and T, are full binary trees,
then the number of vertices of the full binary tree
T=T,- T,isn(T)=1+n(T,)+n(T,)
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Theorem

 If Tisa full binary tree T, then n(T)<2h(T+1-1
e Use structural induction to prove this

e Basis step: for the full binary tree consisting of
just the root r the result is true as n(T)=1 and
N(T)=0, so n(T)=1<2%+1-1=1

* Inductive step: For the inductive hypothesis
we assume that n(T)<2"™W*" -1, n(T,) < 2" 1

where T, and T, are full binary trees
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Theorem

e By the recursive formulae for n(T) and h(T), we have
n(T)=1+n(T,)+n(T,) and h(T)=1+max(h(T,), h(T,))
* Thus,  nry=14n(T,)+n(T,)
<1+ (MW —1) 4 (2" 1)
< 2-max(2"™W*, 2Ny 1
_ 2 . 2max(h(T1),h(T2))+1 _1
=2.2"M _1
_ oh(M+ _1q

* This completes the inductive step
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